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1. Introduction

Finned tube heat exchangers are widely used in a
variety of applications in the air-conditioning, refriger-

ation, and process industry. The application may

involve condensation of humid air on the heat transfer
surfaces when the surface temperature is below the cor-

responding dew point temperatures. Thus simultaneous

heat and mass transfer occurs during the dehumidify-
ing process. The presence of water condensate makes

the heat/mass transfer process even complicated since
it may bridge the ®n spacing and change the airside

characteristics of the ®n-and-tube heat exchangers.

The most common ®n pattern for ®n-and-tube heat

exchangers is plain ®n. In 1978, McQuiston [1] proposed
the ®rst general correlation for plain ®n pattern based

on his test results of ®ve test samples. Recently, Wang et
al. [2] proposed a correlation based on test results of

nine samples. These correlations provided valuable de-

sign information of ®n-and-tube heat exchanger in wet
conditions. However, these correlation were developed

based on test results of one ®n con®guration (Pt and Pl

are the same). Therefore extrapolation of the corre-

lation are seriously questionable. As a result, the objec-

tive of the present study is to propose the airside
correlation for plain ®n geometry in wet conditions

based on a much wider and consistent database.

2. The data bank

The database for the present study are taken from
[2±4] and those newly tested samples by the present

authors. A total of 31 samples are used for the devel-
opment of correlations. Detailed geometry for the test
samples is tabulated in Table 1.

3. Data reduction of heat transfer coe�cient and friction

factors

Basically, the present reduction method is analogous
to Threlkeld's approach [5]. Details of the reduction

process can be found from the previous studies by
Wang et al. [2] and Wang and Chang [6]. Notice that
the Threlkeld method is an enthalpy-based reduction

method. A brief description of the reduction of heat
and mass transfer is given as follows.
The overall heat transfer coe�cient is related to the

individual heat transfer resistance [7] as follows:
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The four quantities (b 'w,m, b 'w,p, b 'p, and b 'r) in Eq. (1)

involve enthalpy-temperature ratios that must be eval-
uated. Detailed evaluation of these four terms can be
found from Wang et al. [2]. The heat transfer perform-

ance is in terms of the Coburn j factor, i.e.

j � hc, o

GcCp, a

Pr2=3: �3�

The determination of the mass transfer coe�cient can
be obtained from the process line [5]. Namely,
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where the parameter, Le, is given as

Le � hc, o

hdCp, a

: �5�

Detailed integration of Eq. (4) can be found from

Myers [7]. The reduction of the friction factor of the
heat exchanger is evaluated from the pressure drop
equation proposed by Kays and London [8] as
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Nomenclature

Ac minimum ¯ow area [m2]
Ao total surface area [m2]
Ap,i inside surface area of tubes [m2]

Af ®n surface area [m2]
Ap,m mean heat transfer area of tubes [m2]
Ap,o outer surface area of tubes [m2]

b 'p slope of a straight line between the outside
and inside tube wall temperatures [J kgÿ1

Kÿ1]
b 'r slope of the air saturation curved at the

mean coolant temperature [J kgÿ1 Kÿ1]
b 'w,m slope of the air saturation curve at the mean

water ®lm temperature of the external sur-

face [J kgÿ1 Kÿ1]
b 'w,p slope of the air saturation curve at the mean

water ®lm temperature of the primary sur-

face [J kgÿ1 Kÿ1]
Cp,a moist air speci®c heat at constant pressure

[J kgÿ1 Kÿ1]
C1, C2, C3 and C4 correlation parameters
Dc tube outside diameter, include collar thick-

ness [m]

Dh hydraulic diameter, 4AcL/Ao [m]
f friction factor
Gc mass ¯ux evaluated at the minimum ¯ow are

[kg sÿ1 mÿ2]
Fp ®n pitch [mm]
hc,o sensible heat transfer coe�cient for wet coils

[W m2 Kÿ1]
hd mass transfer coe�cient [kg mÿ2 sÿ1]
ho,w total heat transfer coe�cient for wet external

surface [W mÿ2 Kÿ1]
i air enthalpy [kJ kgÿ1]

ig,t enthalpy of saturated water vapor evaluated
at mean air temperature [kJ kgÿ1]

j the Colburn factor

j1, f1, f2, f 3, f4 correlation parameters
kp thermal conductivity of tube wall [W mÿ1

Kÿ1]
L depth of heat exchanger [m]
m
.
c mass ¯owrate of water condensate [kg sÿ1]

N the number of tube row

DP pressure drop [Pa]
Pl longitudinal tube pitch [mm]
Pr the Prandtl number of air
Pt transverse tube pitch [mm]

ReDc Reynolds number based on Dc, GcDc/ma
Re®lm mean condensate ®lm Reynolds number,

2G/m
Uo,w wet surface overall heat transfer coe�cient,

based on enthalpy di�erence [kg mÿ2 sÿ1]
W humidity ratio [kg kgÿ1 dry air]

Ws,w humidity ratio of saturated moist air evalu-
ated at condensate temperature [kg kgÿ1 dry
air]

df ®n thickness [m]
dw tube wall thickness [m]
Zf,wet wet ®n e�ciency
m dynamic viscosity of water [N s mÿ2]
ma dynamic viscosity of air [N s mÿ2]
ri inlet air density [kg mÿ3]
rm mean air density [kg mÿ3]
ri outlet air density [kg mÿ3]
s contraction ratio
G mass ¯ow rate per unit width of the tube,

m
.
c/N � W [kg sÿ1 mÿ1]
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where entrance and exit losses of the core were

included in the friction factor.

4. Construction of the correlation

Attempts are made to correlate the present test
results by using a multiple regression technique. The

basic forms of the correlations are:

j � C1Re
C2

Dc �7�

f � C3Re
C4

Dc: �8�

It is assumed that C1, C2, C3, and C4 are dependent on
the physical dimensions of the heat exchanger. A sep-

arate multiple linear regression was proceeded to deter-
mine the exponents, C2 and C4, of the heat exchangers.
The determinations of C1 and C3 are analogous to C2

and C4. As pointed out by Wang et al. [2], the Colburn

j factor is relatively insensitive to change of inlet rela-
tive humidity, thus the e�ect of inlet conditions were
not included in the development of the j correlation.
However, converse to the heat transfer performance,

the friction factors were a�ected by the inlet conditions
[3,4] at small ®n pitch owing to the presence of water
condensate. In this connection, the e�ect of inlet

humidity were included implicitly in the development
of friction correlation using the condensate ®lm Rey-
nolds number, Re®lm (=2G/m ). After a trial and error

process, the ®nal equation forms for the Colburn j fac-
tor and Fanning friction factor f are given as follows
(300<ReDc< 5000):

j � 19:36Re j1
DC

�
Fp

Dc

�1:352�
Pl

Pt

�0:6795

Nÿ1:291 �9�

where

Table 1

Detailed geometry used for developed correlationa

No. References Dc (mm) N Fp (mm) Pl (mm) Pt (mm) df (mm) dw (mm)

1 Wang et al. [2] 10.34 2 1.82 22 25.4 0.13 0.35

2 Wang et al. [2] 10.34 2 2.24 22 25.4 0.13 0.35

3 Wang et al. [2] 10.34 2 3.2 22 25.4 0.13 0.35

4 Wang et al. [2] 10.34 4 2.03 22 25.4 0.13 0.35

5 Wang et al. [2] 10.34 4 2.23 22 25.4 0.13 0.35

6 Wang et al. [2] 10.34 4 3 22 25.4 0.13 0.35

7 Wang et al. [2] 10.34 6 1.85 22 25.4 0.13 0.35

8 Wang et al. [2] 10.34 6 2.21 22 25.4 0.13 0.35

9 Wang et al. [2] 10.34 6 3.16 22 25.4 0.13 0.35

10 Wang et al. [3] 7.53 4 1.78 12.4 21 0.115 0.27

11 Wang et al. [3] 7.53 4 1.22 12.4 21 0.115 0.27

12 Wang et al. [3] 7.53 2 1.78 12.4 21 0.115 0.27

13 Wang et al. [3] 7.53 2 1.22 12.4 21 0.115 0.27

14 Wang et al. [4] 8.62 2 1.7 19.05 25.4 0.12 0.31

15 Wang et al. [4] 8.62 2 3.11 19.05 25.4 0.12 0.31

16 Wang et al. [4] 8.62 4 1.7 19.05 25.4 0.12 0.31

17 Wang et al. [4] 8.62 4 3.11 19.05 25.4 0.12 0.31

18 Present study 10.3 4 1.23 19.05 25.4 0.115 0.31

19 Present study 10.3 2 1.23 19.05 25.4 0.115 0.31

20 Present study 10.3 2 2.23 19.05 25.4 0.115 0.31

21 Present study 10.3 1 2.23 19.05 25.4 0.115 0.31

22 Present study 10.3 4 1.55 19.05 25.4 0.115 0.31

23 Present study 10.3 1 1.23 19.05 25.4 0.115 0.31

24 Present study 8.58 4 1.21 19.05 25.4 0.115 0.31

25 Present study 8.58 4 2.06 19.05 25.4 0.115 0.31

26 Present study 8.58 2 1.23 19.05 25.4 0.115 0.31

27 Present study 8.58 2 2.06 19.05 25.4 0.115 0.31

28 Present study 8.58 4 1.6 19.05 25.4 0.115 0.31

29 Present study 8.58 1 2.04 19.05 25.4 0.115 0.31

30 Present study 8.58 1 1.19 19.05 25.4 0.115 0.31

31 Present study 10.3 4 2.31 19.05 25.4 0.115 0.31

a All the ®n surfaces are not hydrophilically coated.
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The proposed sensible j factor (Eq. 9), gives a mean

deviation of 6.33% while the predictions by friction
factors (Eq. 11) shows a mean deviation of 9.51%.
Detailed comparisons between the proposed corre-

lations of j, f and hc,o/hdCp,a and the experimental data
are depicted in Table 2.

5. Conclusions

A generalized heat transfer and friction correlation
for plain ®n-and-tube heat exchangers in wet con-
ditions are reported in the present study. A total of 31

samples of ®n-and-tube heat exchangers are used to
develop the correlation. The proposed heat transfer
correlation can describe 93.4% of the test data within

215% with a mean deviation of 6.33% while the pro-
posed friction correlation can describe 83.5% of the
results within215% with a mean deviation of 9.51%.
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Table 2

Comparison of the proposed correlation with the experimen-

tal data

Deviation 210% 215% 220% 225% Mean deviationa

j 76.2% 93.4% 98.3% 99.4% 6.33%

f 65.1% 83.5% 90.6% 94.2% 9.51%

hc,o/hdCp,a 61.3% 81.4% 91.6% 94.5% 9.01%

a Mean deviation= 1
M �
PM

1
jCorrelationÿDataj

Data
� � 100%; M: num-

ber of data point.
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